Within the microbial world protozoa, such as crypto, are some of the most resistant to all types of disinfectants. The reason for this resistance is due to its hard outer protective shell, which must be broken through prior to the microbe being inactivated. Crypto can cause a variety of ailments, including abdominal cramping, diarrhea, fever and nausea that can last as long as a month, according to the Centers for Disease Control and Prevention (CDC).
Typical disinfectants used to ward off cryptosporidium for most water treatment applications are chlorine (liquid state), chloramines, chlorine-dioxide (gaseous state) and ozone. However, their ability to perform this inactivation duty should not be regarded equal, as each sanitizer requires a specific level of concentration and contact time to take effect.
Ct Values
To better determine the specific amount of the disinfectant required to inactivate or destroy a microbe, the Environmental Protection Agency (EPA) has determined precise Ct Values. These Ct Values are the product of the disinfectant’s concentration (C, expressed in mg/L) and the contact time (t, expressed in minutes). These Ct Values are calculated specifically to the percentage of microbial kill or better known as the log reduction, e.g. 1-Log = 90.0 percent, 2-Log = 99.0 percent or 3-Log = 99.9 percent inactivation of the particular microbe. Figure 2 provides EPA Ct Values for cryptosporidium based on the desired log reductions and temperature for both chlorine dioxide and ozone respectively. According to the EPA, chlorine dioxide would require a Ct of 226, which would correlate to 226 mg/L, at one minute of contact time, at 25° C to achieve a 3-Log reduction or 99.9 percent inactivation. Although, ozone would only require a Ct of 7.4, correlating to 7.4 mg/L, to achieve the same 99.9 percent inactivation with the same parameters as chlorine dioxide (EPA, LT2ESWTR, 2005).