Low pressure elements are usually referred to as LP for low pressure or LE for low energy, as pressure and energy are interrelated the nomenclature used is interchangeable. Typically, the trade off with reverse osmosis membranes is between flow and rejection. For higher rejection, the membrane must be tightened to create lower flow. Conversely, higher flow requires a loosening of the membrane, resulting in higher salt passage. Thus, the two main reverse osmosis (RO) performance metrics move inversely with one another. In many commercial and industrial applications, however, maximizing permeate quality is not always necessary. In these instances LP/LE elements may be an excellent choice for many OEMs and end users.
There are a couple of advantages that can be achieved by using LP/LE membranes as an alternative to higher pressure standard RO elements in commercial RO systems. The advantage achieved will depend on how elements operate in a system. One option would be to run them at lower pressure to achieve energy savings. The second option is to operate them at the same pressure to increase permeate flow. In either case, the choice made can significantly influence pump selection, energy costs, permeate production and RO element life.
Option one: Save money
Using a low pressure membrane to reduce feed pressure requirements can save money by lowering initial capital equipment costs. This is done primarily by enabling the use of a less expensive, lower pressure pump. Lower pressure can also mean reduced operating costs since less energy is required to force water through the membrane barrier layer. Examples one and two demonstrate using an RO system design program to evaluate the differences between a standard RO element and a LP/LE element.
Example one – Low TDS (500 PPM)
In this comparison an RO system using a single 4040 element is used to produce a permeate flow rate of 2,900 gallons per day (GPD) at a water temperature of 25⁰ C. In the bar charts below, the standard RO element required 12.13 kilowatt hours to produce 1,000 gallons of permeate. The LP/LE required only 7.26 kilowatt hours to make the same amount of water. In terms of applied pressure, the standard RO operated at 195 psig, while the LP/LE element operated at 115 psig.