Flue gas desulfurization (FGD) is a process by which the exhaust gas at fossil-fired power plants is rendered safe for discharge to the atmosphere. FGD slurries are relatively abrasive, corrosive, and dense. To pump aggressive slurries reliably, a pump has to be specifically engineered for smooth, cool operation. It must be manufactured in materials suited for the particular slurry, assembled precisely and properly coated.
Achieving Optimum Value
To avoid unplanned downtime, weak points need to be understood and addressed. Areas to be considered with aggressive slurries include shaft sealing, cable entry and cooling.
By the Numbers
No. 1, silicon carbide mechanical seal faces are required. Tests show silicon carbide shaft seals are 15-20 times more durable than ceramic carbon and 2.5-3 times more durable than tungsten carbide. Seal faces must be flat - (a relative term, but the flatter the better) - to exclude fine particles; and the springs providing tension to close these faces should be isolated from the slurry.
No. 2, the cable entry should be sealed from the motor chamber so integrity of the motor is maintained in event of moisture intrusion from the top and a positive strain relief mechanism should be provided. Individual conductors stripped down to bare wire, passing through an epoxy barrier, precludes moisture from a damaged cable entering the stator cavity. Further protection is provided by an isolated terminal board, O-ring sealed. This board can be built to facilitate field voltage changes as well.
No. 3, generally, heat can be dissipated through the motor housing to the pumped medium. A means to continuously dissipate motor heat through a heat exchanger should be incorporated − even when gypsum or other material may cause an insulating build-up of material. The cooling method should be rated for 24/7 operation, under full load.
Positive internal cooling methods permit pumping to a lower level in the sump, which increases sump capacity; this can translate into hundreds of gallons of sump capacity.
No. 4, protective coatings require high adhesion characteristics because of hydraulic forces inside the sump. Low adhesion coatings can fail prematurely. (Adhesion is measured in Newtons per-square-millimeter (N/mm2).) For example, a standard industrial paint coating has an adhesion level of about 4 N/mm2, while a two-component coating with a high percentage of solids has an adhesion level of approximately 7 N/mm2. Today, there are liquid ceramic coatings that provide an adhesion level of 15 N/mm2. The elastomer component resists corrosion and impregnated ceramic resists abrasion.