In water treatment applications, turndown is important because the volume and quality of the incoming water can vary on a regular basis.
New insight
To gain new insight, a metering pump manufacturer that has been in business for more than 80 years conducted an outreach campaign to users and distributors of its pumps used for municipal and industrial water treatment applications such as coagulation and flocculation; pH control; dechlorination; chemical precipitation and oxidation; ion exchange; chemical neutralization and stabilization; disinfection; and taste and odor control.
The goals of the program were twofold:
- To identify and understand customer needs and pain points and to rank and weigh the functionality that users wanted to see in metering pumps
- To share particular ideas with users and distributors to bring them into the development process as new pumps are designed and
manufactured
The majority of the feedback focused on leveraging technology to become more efficient and to reduce costs wherever possible. Pumping infrastructure can help achieve these objectives if it can deliver in the following areas:
Efficiency
Every water treatment application can benefit from efficiency gains from reduced power consumption and increased chemical dosing accuracy. The power bill and chemical costs represent the majority of water treatment plants’ operating expenses, so efficiency gains in these areas are noticeable.
The pumps used in water treatment applications should feature more efficient motors with variable speed drive technology that can handle a wide range of flows without being affected by discharge pressure changes. Pumps used in these applications should also provide 1,000-to-1 turndown capabilities, with +/- 1 percent steady state accuracy.
In water treatment applications, turndown is important because the volume and quality of the incoming water can vary regularly. Municipal treatment plants located on rivers need flexibility to deal with storms that bring mud and sediment, while those on large lakes with relatively small variations in turbidity may only require minimal dosage changes. Seasonal differences impact turndown capabilities because seasonal changes in water quality impact chemicals that lose concentration or effectiveness in higher temperatures.
Overtreating water is wasteful, expensive and does not produce a better product. But undertreating in processes such as drinking water disinfection could potentially harm consumers. Striking the right balance is critical, and this is directly related to the accuracy and the turndown capabilities of the metering pumps used for the process.
Reliability
For plants that run operations around the clock, reliability — specifically meantime between failures — for pumps is important. Although everyone would prefer an "install, start and forget" approach, the reality is that all types of pumps require basic maintenance to deliver specified performance. Typically, treatment facilities will select either (or both) mechanically actuated diaphragm pumps or peristaltic pumps for chemical injection.
The benefit of mechanically actuated diaphragm pumps is that they operate longer between maintenance actions than do peristaltic pumps and they have proven to be safer to operate.
Diaphragm pumps do not utilize polymer tubes or hoses that wear and fatigue from contact with drive rollers, which when weakened alter the flow characteristics and eventually fail without any
advance warning. Mechanically actuated diaphragm pumps have a more robust and time-proven design, providing longer life,
requiring less maintenance, maximizing plant uptime and minimizing the risks associated with leaks or spills that could result from failed hoses or tubing.