Pharmaceutical manufacturing plants generate large volumes of wastewater during everyday operations. One example is rinse water from cleaning reactors, fermenters, mixing vessels and other production equipment. Rinse water is typically produced from clean-in-place (CIP) processes where equipment and utensils are cleaned, maintained and sanitized in-situ using chemicals, heat and turbulent flow without having to take apart the equipment.
CIP rinse water contains complex organic pollutants such as residual active pharmaceutical ingredients (APIs), solvents and surfactants, which can be resistant or toxic to traditional biological treatment. Therefore, municipal wastewater treatment plants will often reject wastewater contaminated with organic pollutants. In these cases, manufacturers must haul wastewater off-site — in some cases, hundreds of miles — to be incinerated at a special waste facility or waste-to-energy plant.
While wastewater trucking and incineration is an established practice within the pharmaceutical industry, it is expensive, energy intensive, high risk and frequently at odds with corporate green manufacturing practices aimed at waste reduction, water reuse and improved safety and environmental performance.
In other cases, pharmaceutical plants are either exceeding discharge limits for specific organic compounds or facing emerging risks associated with discharging API-contaminated effluent to surface water.
As a result, the industry is seeking new solutions to address these pain points to reduce costs and risks and improve operational performance.