This diagram illustrates the operation of a mixed-flow impeller fan, which operates on the principle of diluting contaminated exhaust air with unconditioned, outside ambient air via a bypass mixing plenum (A) and (B) bypass dampers. The diluted process air is accelerated through an optimized discharge nozzle/windband (D), where nearly twice as much additional fresh air is entrained into the exhaust plume before leaving the fan assembly (C). Additional fresh air is entrained into the exhaust plume after it leaves the fan assembly through natural aspiration (E). The combination of added mass and high discharge velocity minimizes the risk of contaminated exhaust being re-entrained into building fresh air intakes, doors, windows, or other openings.
Click here to enlarge imageThe exhaust/air mixing approach can also be achieved with a centrifugal-type belt-driven exhaust fan system with an exhaust outlet through a rooftop-mounted steel stack. However, the stack must have sufficient height, generally 25 feet or more, to disperse the odiferous jet stream into the atmosphere with maximum dilution effect. In contrast, the exhaust structure for a mixed-flow impeller fan is typically only about 15 feet high. In addition, low-profile mixed-flow impeller fans do not require structural reinforcements on the roof of a facility and do not require the extra stabilizing hardware, such as spring vibration isolators and guy wires that are needed for use with centrifugal fan exhaust systems employing tall stacks.
Send For The Scrubbers
In many cases, the use of biological, carbon or chemical scrubbers may be needed in conjunction with the mixed-flow exhaust fans. The particular chemical content of the wastewater and the dilution levels can help determine what odor-control measures or combination of measures will be used. For example, contaminants such as hydrogen sulfide can be extremely noxious even in low concentrations, requiring a higher level of dilution than other hazardous (and perhaps less-perceptible) contaminants.
This approach has been used successfully in conjunction with a mixed-flow impeller fan system at the former Jacksonville Electric Authority (JEA) wastewater treatment facility. Because of the fast growth in the surrounding community, JEA’s lift stations were handling higher wastewater flows which were causing an increase in hydrogen sulfide emissions − at levels of 100 to 150 parts per million by volume (ppmv) at the wetwell vent without ventilation.
JEA, with more than 200,000 customers in Florida, installed a 400-cfm bioscrubber at one of its most odor-sensitive lift stations. The bioscrubber processed inlet hydrogen sulfide concentrations ranging from 3.9 to 27.7 ppmv with > 99% efficiency at a 10-second GRT, while delivering hydrogen sulfide concentrations as low as 0.03 ppmv at the outlet.
A combined system approach using a chemical scrubber or bioscrubber with a mixed flow exhaust fan can provide the most versatile means of treating odiferous compounds. For challenging cases such as the JEA plant, the combination approach succeeded where a single approach may have proven inadequate.
About the Authors
Charlie Gans, P.E., is the assistant general manager at Strobic Air Corp., a subsidiary of Met-Pro Corp., Harleysville, PA. Since joining the company in 1993, he has held positions as project engineer, engineering manager, director of operations and eastern regional manager. Gans maintains a Professional Engineering license in the Commonwealth of Pennsylvania. He has designed a variety of fan impellers and air moving systems, mainly for air pollution control and energy recovery applications. He may be contacted at [email protected]. Gregory C. Kimmer is a Vice President of Met-Pro Corporation and General Manager of the Duall Division of Owosso, MI. He is a graduate of Michigan State University, and has been actively involved in the air pollution and municipal odor control industries for more than 30 years.