Particle contamination and corrosion-related failures account for 52 percent of all of these bearing failures. Further, bearing housing seals -- more specifically the seal type -- also play a crucial role in centrifugal pump/bearing reliability. Several of my prior columns have covered the issues of bearing lubrication, particle contamination and bearing housing seals.
The objective of this column is to focus on the bearing types used for centrifugal pumps, their advantages, limitations, and other factors impacting bearing life. The function of the bearings in a centrifugal pump is to keep the shaft or rotor in correct alignment with the stationary parts under the action of radial and transverse (axial) loads (see Fig. 1). Bearings that give radial positioning to the rotor are known as line bearings, and those that locate the rotor axially are called thrust bearings. In most applications, the thrust bearings actually serve both as thrust and radial bearings.
Bearing Types
All types of bearings have been used in centrifugal pumps, even magnetic bearings (see "Activated Magnetic Bearing Potential for Centrifugal Pumps," WW, March 2010). The same pump type (or model) is frequently even offered with two or more different bearing types, dictated either by varying service conditions or by the preference of the purchaser. Most pumps use either antifriction or oil film (sleeve-type) bearings, such as those listed below:
• Antifriction bearings
– Single-row, deep-groove ball bearing
– Double-row, angular contact ball bearing
– Single-row, angular contact ball bearing pair
– Cylindrical roller bearings
– Spherical roller bearings
– Taper roller bearings set
• Sleeve bearings*
• Pivoted-shoe thrust bearings*
*These bearings (see Fig. 2) are typically used for large pumps and motors with high thrust and/or radial loads (exceeding antifriction bearing capabilities).
Antifriction Bearings
Antifriction bearings -- and especially ball bearings -- are most commonly used in small- and medium-sized pumps because of their high speed capability and low friction. Most municipal applications use antifriction bearings.
Bearing Cages
It is essential that the balls (or rollers) in antifriction bearings be equally spaced. For this reason, a retaining cage is used between the balls and between the inner and outer races (see Fig. 3). This cage carries no load, but the contact between it and the ball produces sliding friction that generates a small amount of heat. Ball bearings are generally produced with glass fiber-reinforced polyamide, pressed metallic (of either steel or brass) or machined brass.